TLS Online TPP Program
More Questions
TLS Online TPP Program
#Question id: 15010
#Unit 8. Inheritance Biology
The phenomenon where half the "normal" level of functional protein is not enough to generate a normal phenotype is called haploinsufficiency. Which of the following situations demonstrates haploinsufficiency?
TLS Online TPP Program
#Question id: 15011
#Unit 8. Inheritance Biology
Which of the following statements about a lethal allele is NOT correct?
TLS Online TPP Program
#Question id: 15146
#Unit 8. Inheritance Biology
You have isolated a set of five yeast mutants that form dark red colonies instead of the usual white colonies of wild-type yeast. You cross each of the mutants to a wild-type haploid strain and obtain the results shown below;
What do these results tell you about each of the mutants?
TLS Online TPP Program
#Question id: 15147
#Unit 8. Inheritance Biology
You have isolated a set of five yeast mutants that form dark red colonies instead of the usual white colonies of wild-type yeast. You cross each of the mutants to a wild-type haploid strain and obtain the results shown below;
you cross each haploid mutant strain to a different haploid mutant of the opposite mating type. From the results shown below deduce as much as you can about which mutations lie in the same gene. Clearly state any remaining ambiguities and suggest some general ways that the ambiguities might be resolved
a) That mutants 1 and 3 form one complementation group and are mutations in the same gene (gene A)
b) That mutations 2 and 5 form a second complementation group and are mutations in a second gene (gene B).
c) That mutations 3 and 5 form a second complementation group and are mutations in a second gene (gene B).
d) The first ambiguity is whether mutant 4 has a mutation in gene A or B, or whether it represents a unique gene.
Which of the following is the correct prediction about mutants?
TLS Online TPP Program
#Question id: 15148
#Unit 8. Inheritance Biology
You have isolated a set of five yeast mutants that form dark red colonies instead of the usual white colonies of wild-type yeast. You cross each of the mutants to a wild-type haploid strain and obtain the results shown below;
you cross each haploid mutant strain to a different haploid mutant of the opposite mating type. What type of mutation shown in the above figure;
TLS Online TPP Program
#Question id: 15149
#Unit 8. Inheritance Biology
In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses is made between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in series with recessive mutations in both genes, what will be the phenotype in F1 progeny?