#Question id: 10334
#Botany
N2 combines with hydrogen to form ammonia under elevated temperature (about 200°C) and high pressure (about 200 atmospheres) and in the presence of a metal catalyst (usually iron). The extreme conditions are required to overcome the high activation energy of the reaction. This nitrogen fixation reaction, called
#Question id: 10334
#Plant Biotechnology
N2 combines with hydrogen to form ammonia under elevated temperature (about 200°C) and high pressure (about 200 atmospheres) and in the presence of a metal catalyst (usually iron). The extreme conditions are required to overcome the high activation energy of the reaction. This nitrogen fixation reaction, called
#Question id: 10334
#Life Sciences
N2 combines with hydrogen to form ammonia under elevated temperature (about 200°C) and high pressure (about 200 atmospheres) and in the presence of a metal catalyst (usually iron). The extreme conditions are required to overcome the high activation energy of the reaction. This nitrogen fixation reaction, called
#Question id: 10334
#Applied Microbiology
N2 combines with hydrogen to form ammonia under elevated temperature (about 200°C) and high pressure (about 200 atmospheres) and in the presence of a metal catalyst (usually iron). The extreme conditions are required to overcome the high activation energy of the reaction. This nitrogen fixation reaction, called
#Question id: 10334
#Environmental Science
N2 combines with hydrogen to form ammonia under elevated temperature (about 200°C) and high pressure (about 200 atmospheres) and in the presence of a metal catalyst (usually iron). The extreme conditions are required to overcome the high activation energy of the reaction. This nitrogen fixation reaction, called
#Question id: 10335
#Botany
plants can store high levels of nitrate, and they can translocate it from tissue to tissue without deleterious effect. Yet if livestock or humans consume plant material that is high in nitrate, they may suffer with,
