TLS Online TPP Program

#Question id: 13087


To express a yeast gene in E. coli, your task is to design a strategy to insert the yeast gene into the bacterial plasmid. Below is a map of the area of the yeast genome surrounding the gene in which you are interested.

 
The distance between each tick mark placed on the line above is 100 bases in length
Below are the enzymes you can use, with their specific cut sites shown 5’-XXXXXX-3’ 3’-XXXXXX-5’

 
The plasmid is 5,000 bases long and the two farthest restriction enzyme sites are 200 bases apart. The plasmid has an ampicillin resistance gene somewhere on the plasmid distal from the restriction cut sites.

                              
Which of the following restriction enzyme is the best choice for you use to design a way to get the insert into the vector?

#Section 7: Recombinant DNA technology and Other Tools in Biotechnology
  1. XbaI and SalI
  2. SalI and EcoRI
  3. NdeI (N) only 
  4. KpnI and NdeI
More Questions
TLS Online TPP Program

#Question id: 14227

#Section 5: Bioprocess Engineering and Process Biotechnology

A fermenter is maintained at 35⁰C by water circulating at a rate of 0.5 kg s^-1 in a cooling coil inside the vessel. The inlet and outlet temperatures of the water are 8⁰C and 15⁰C respectively. The length of the cooling coil is increased by 50%. In order to maintain the same fermentation temperature, the rate of heat removal must be kept the same. Determine the new cooling-water flow rate and outlet temperature by carrying out the following calculations. The heat capacity of the cooling water can be taken as 4.18 kJ kg^- 1 o C^- 1. Evaluate UA for the original coil. ________________

TLS Online TPP Program

#Question id: 14228

#Section 5: Bioprocess Engineering and Process Biotechnology

A fermenter is maintained at 35⁰C by water circulating at a rate of 0.5 kg s^-1 in a cooling coil inside the vessel. The inlet and outlet temperatures of the water are 8⁰C and 15⁰C respectively. The length of the cooling coil is increased by 50%. In order to maintain the same fermentation temperature, the rate of heat removal must be kept the same. Determine the new cooling-water flow rate and outlet temperature by carrying out the following calculations. The heat capacity of the cooling water can be taken as 4.18 kJ kg^- 1 o C^- 1. If the length of the coil is increased by 50⁰C the area available for heat transfer, A ', also increases by 50% so that A' = 1.5 A. The value of the overall heat-transfer coefficient is not expected to change very much. For the new coil, what is the value of UA’  ______________

TLS Online TPP Program

#Question id: 14229

#Section 5: Bioprocess Engineering and Process Biotechnology

A fermenter is maintained at 35⁰C by water circulating at a rate of 0.5 kg s^-1 in a cooling coil inside the vessel. The inlet and outlet temperatures of the water are 8⁰C and 15⁰C respectively. The length of the cooling coil is increased by 50%. In order to maintain the same fermentation temperature, the rate of heat removal must be kept the same. Determine the new cooling-water flow rate and outlet temperature by carrying out the following calculations. The heat capacity of the cooling water can be taken as 4.18 kJ kg^- 1 o C^- 1. By how much are the cooling-water requirements reduced after the new coil is installed?_____________

TLS Online TPP Program

#Question id: 14230

#Section 5: Bioprocess Engineering and Process Biotechnology

In current service, 20 kg s^-1 cooling water at 12⁰C must be circulated through a coil inside a fermenter to maintain the temperature at 37⁰C The coil is 150 m long with pipe diameter 12 cm; the exit water temperature is 28⁰C After the inner and outer surfaces of the coil are cleaned it is found that only 13 kg s^-1 cooling water is required to control the fermentation temperature. Calculate the overall heat-transfer coefficient before cleaning. _____________

TLS Online TPP Program

#Question id: 14231

#Section 5: Bioprocess Engineering and Process Biotechnology

In current service, 20 kg s^-1 cooling water at 12⁰C must be circulated through a coil inside a fermenter to maintain the temperature at 37⁰C The coil is 150 m long with pipe diameter 12 cm; the exit water temperature is 28⁰C After the inner and outer surfaces of the coil are cleaned it is found that only 13 kg s^-1 cooling water is required to control the fermentation temperature. Calculate the overall heat-transfer coefficient before cleaning. What fraction of the total resistance to heat transfer before cleaning was due to fouling deposits?____________

TLS Online TPP Program

#Question id: 14232

#Section 5: Bioprocess Engineering and Process Biotechnology

Nutrient medium is to be heated from 10⁰C to 28⁰C is a single-pass countercurrent shell-and-tube heat exchanger before being pumped into a fed-batch fermenter. Medium passes through the tubes of the exchanger; the shell-side fluid is water which enters with flow rate 3 x 10^4 kg h^- 1 and temperature 60⁰C pre-heated medium is required at a rate of 50 m^3 h^-1. The density, viscosity and heat capacity of the medium are the same as water; the thermal conductivity of the medium is 0.54 Wm^- 1 ⁰C^ - 1. It is proposed to use 30 steel tubes with inner diameter 5 cm; the tubes will be arranged in line. The pipe wall is 5-mm thick; the thermal conductivity of the metal is 50 Wm^- 1 ⁰C^ - 1. The maximum linear shell-side fluid velocity is estimated as 0.15 m s^-1. What is the rate of heat transfer?