TLS Online TPP Program

#Question id: 15684


If  then (x , y)

#Section 1: Engineering Mathematics
  1. (1, 0) 
  2. (1, 1)
  3. (0, 1) 
  4. (2, 1) 
More Questions
TLS Online TPP Program

#Question id: 14311

#Section 5: Bioprocess Engineering and Process Biotechnology

Consider following fig, which applies to a fed-batch system.

                           

Assume at t = 0, V = 100 l, X = 2 g/l, m = 1 h-1 , S0 = 4 g/l, and S = 0.01 g/l. V is increased at a constant rate such that dV/dt = 20 l/h = F (or flow rate) and X is constant at all times. What is µ at t = 5 h?

TLS Online TPP Program

#Question id: 14312

#Section 5: Bioprocess Engineering and Process Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  Determine the required reactor volume.

______________

TLS Online TPP Program

#Question id: 14313

#Section 5: Bioprocess Engineering and Process Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  Determine the cell concentration in the reactor and in the recycle stream.

_____________

TLS Online TPP Program

#Question id: 14314

#Section 5: Bioprocess Engineering and Process Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h^-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  The effluent concentration is desired to be 100 mg/l. If the residence time is 2 h in the sedimentation tank, determine the volume of the sedimentation tank and cell concentration in the effluent of the sedimentation tank.

TLS Online TPP Program

#Question id: 14315

#Section 5: Bioprocess Engineering and Process Biotechnology

Anaerobic digestion of volatile acids by methane bacteria is represented by the equation:

                                   

The composition of methane bacteria is approximated by the empirical formula CH1.4Oo.40N0.20. For each kg acetic acid consumed, 0.67 kg CO 2 is evolved. How does the yield of methane under these conditions compare with the maximum possible yield?

TLS Online TPP Program

#Question id: 14316

#Section 5: Bioprocess Engineering and Process Biotechnology

Cellulomonas bacteria used as single-cell protein for human or animal food are produced from glucose under anaerobic conditions. All carbon in the substrate is converted into biomass; ammonia is used as nitrogen source. The molecular formula for the biomass is CHI.5600.54N0.16; the cells also contain 5% ash. How does the yield of biomass from substrate in mass and molar terms compare with the maximum possible biomass yield?