TLS Online TPP Program

#Question id: 5155


Find the Unit digit of (432)412 X (499)431

#General Aptitude
  1. 2

  2. 4

  3. 6

  4. 8

More Questions
TLS Online TPP Program

#Question id: 14306

#Section 5: Bioprocess Engineering and Process Biotechnology

Pseudomonas putida with mm = 0.5 h-1 is cultivated in a continuous culture under aerobic conditions where D = 0.28 h-1 . The carbon and energy source in the feed is lactose with aconcentration of S0 = 2 g/l. The effluent lactose concentration is desired to be S = 0.1 g/l. If the growth rate is limited by oxygen transfer, by using the following information:

Determine the steady-state biomass concentration (X)

                _________________

TLS Online TPP Program

#Question id: 14307

#Section 5: Bioprocess Engineering and Process Biotechnology

Pseudomonas putida with mm = 0.5 h-1 is cultivated in a continuous culture under aerobic conditions where D = 0.28 h-1 . The carbon and energy source in the feed is lactose with aconcentration of S0 = 2 g/l. The effluent lactose concentration is desired to be S = 0.1 g/l. If the growth rate is limited by oxygen transfer, by using the following information


Determine specific rate of oxygen consumption (qO2 ).

TLS Online TPP Program

#Question id: 14308

#Section 5: Bioprocess Engineering and Process Biotechnology

Pseudomonas putida with µm = 0.5 h-1 is cultivated in a continuous culture under aerobic conditions where D = 0.28 h-1 . The carbon and energy source in the feed is lactose with aconcentration of S0 = 2 g/l. The effluent lactose concentration is desired to be S = 0.1 g/l. If the growth rate is limited by oxygen transfer, by using the following information:


What should be the oxygen-transfer coefficient (kLa) in order to overcome oxygentransfer limitation (i.e., CL = 2 mg/l)? ___________________

TLS Online TPP Program

#Question id: 14309

#Section 5: Bioprocess Engineering and Process Biotechnology

Glucose is converted to ethanol by immobilized yeast cells entrapped in gel beads. The specific rate of ethanol production is: qP = 0.2 g ethanol/g-cell-h. The effectiveness factor for an average bead is 0.8. Each bead contains 50 g/L of cells. The voids volume in the column is 40%. Assume growth is negligible (all glucose is converted into ethanol). The feed flow rate is F = 400 l/h and glucose concentration in the feed is S0i = 150 g glucose/l. The diameter of the column is 1 m and the yield coefficient is about 0.49 g ethanol/g glucose. The column height is 4 m. What is the glucose conversion at the exit of the column?

TLS Online TPP Program

#Question id: 14310

#Section 5: Bioprocess Engineering and Process Biotechnology

Glucose is converted to ethanol by immobilized yeast cells entrapped in gel beads. The specific rate of ethanol production is: qP = 0.2 g ethanol/g-cell-h. The effectiveness factor for an average bead is 0.8. Each bead contains 50 g/L of cells. The voids volume in the column is 40%. Assume growth is negligible (all glucose is converted into ethanol). The feed flow rate is F = 400 l/h and glucose concentration in the feed is S0i = 150 g glucose/l. The diameter of the column is 1 m and the yield coefficient is about 0.49 g ethanol/g glucose. The column height is 4 m. What is the ethanol concentration in the exit stream?

________________

TLS Online TPP Program

#Question id: 14311

#Section 5: Bioprocess Engineering and Process Biotechnology

Consider following fig, which applies to a fed-batch system.

                           

Assume at t = 0, V = 100 l, X = 2 g/l, m = 1 h-1 , S0 = 4 g/l, and S = 0.01 g/l. V is increased at a constant rate such that dV/dt = 20 l/h = F (or flow rate) and X is constant at all times. What is µ at t = 5 h?