#Question id: 27873
#Research Methodology
The split-half method is used as a test of:
#Question id: 4363
#SCPH28 | Zoology
researcher found a method she could use to manipulate and quantify phosphorylation and methylation in embryonic cells in culture. In one set of experiments, she succeeded in increasing acetylation of histone tails in the chromatin of the cells. Which of the following results would she most likely see in these cells?
#Question id: 1608
#I Life Science/ Life Sciences Group – I-V
Pattern recognition receptors (PRR) include which of the following?
#Question id: 18677
#SCPH01 Biochemistry
#Question id: 15155
#SCPH01 Biochemistry
In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in parallel with dominant mutations in both genes, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.