TLS Online TPP Program

#Question id: 10797


The colored pigments of plants are of two principal types: carotenoids and flavonoids. Given below some statements of about these pigments;

 a) Anthocyanins are colored flavonoids that attract animals

b) Flavonoids are phenolic compounds that include a wide range of colored substances

c) Carotenoids are coloured terpenoid compounds that also serve as accessory pigments in photosynthesis

d) most widespread group of pigmented carotenoids is the anthocyanins, these are glycosides that have sugars. Without their sugars, anthocyanins are known as anthocyanidins

Which of the following is incorrect statements of these pigments;

#I Life Science/ Life Sciences Group – I-V
  1. Only D      
  2. A and C 
  3. C and D       
  4. A and B
More Questions
TLS Online TPP Program

#Question id: 13099

#SCPH01 Biochemistry

 You are a scientist who is using genomics to currently study a new bacterial species that no one has ever studied before. The following sequence is a piece of DNA within the coding region of a gene that you have recently sequenced.
 
You are using shotgun sequencing to determine the DNA sequence of the genome of this new bacterial species. For one strand of a 30-nucleotide long stretch of DNA, you get the following sequences out of your shotgun sequencing reaction. 
 
Choose correct 30-nt-long DNA sequence with the help of above-mentioned fragments

TLS Online TPP Program

#Question id: 13099

#SCPH05 I Biotechnology

 You are a scientist who is using genomics to currently study a new bacterial species that no one has ever studied before. The following sequence is a piece of DNA within the coding region of a gene that you have recently sequenced.
 
You are using shotgun sequencing to determine the DNA sequence of the genome of this new bacterial species. For one strand of a 30-nucleotide long stretch of DNA, you get the following sequences out of your shotgun sequencing reaction. 
 
Choose correct 30-nt-long DNA sequence with the help of above-mentioned fragments

TLS Online TPP Program

#Question id: 13099

#SCPH06 I Botany

 You are a scientist who is using genomics to currently study a new bacterial species that no one has ever studied before. The following sequence is a piece of DNA within the coding region of a gene that you have recently sequenced.
 
You are using shotgun sequencing to determine the DNA sequence of the genome of this new bacterial species. For one strand of a 30-nucleotide long stretch of DNA, you get the following sequences out of your shotgun sequencing reaction. 
 
Choose correct 30-nt-long DNA sequence with the help of above-mentioned fragments

TLS Online TPP Program

#Question id: 13099

#SCPH28 | Zoology

 You are a scientist who is using genomics to currently study a new bacterial species that no one has ever studied before. The following sequence is a piece of DNA within the coding region of a gene that you have recently sequenced.
 
You are using shotgun sequencing to determine the DNA sequence of the genome of this new bacterial species. For one strand of a 30-nucleotide long stretch of DNA, you get the following sequences out of your shotgun sequencing reaction. 
 
Choose correct 30-nt-long DNA sequence with the help of above-mentioned fragments

TLS Online TPP Program

#Question id: 13100

#SCPH01 Biochemistry

 You are a scientist who is using genomics to currently study a new bacterial species that no one has ever studied before. The following sequence is a piece of DNA within the coding region of a gene that you have recently sequenced.
 
You are using shotgun sequencing to determine the DNA sequence of the genome of this new bacterial species. For one strand of a 30-nucleotide long stretch of DNA, you get the following sequences out of your shotgun sequencing reaction. Assemble the entire 30-nt-long DNA sequence
  
5’-TGGGAGTTCCTCAAACGCGTTGTCACTGAC-3’
You put the DNA sequence that you have assembled into a computer program that tells you that the following piece of DNA, which comes from another bacterium, is a close match to the sequence you have sequenced from your bacterium: 5’-…TGGGCATTTCTCAAGCGGGTTGTAATGGAT…-3’
This 30-nt-long sequence fragment lies in the center of a gene, and that portion of the sequence encodes for this 10-amino acid-long part of a protein: 
N-…Trp-Ala-Phe-Leu-Lys-Arg-Val-Val-Met-Asp…-C
You hypothesize that the sequence you have discovered is another bacterial species’ version of the same gene as this previously known gene. To measure how identical the two genes are at the DNA level and/or the two proteins are at the amino acid level, you can calculate a percentage of “identity” for each. This is the percent of nucleotides (for the gene) or the percent of amino acids (for the protein) that are identical between the two sequences.
What is the % identity between the two DNA sequences?

TLS Online TPP Program

#Question id: 13100

#SCPH05 I Biotechnology

 You are a scientist who is using genomics to currently study a new bacterial species that no one has ever studied before. The following sequence is a piece of DNA within the coding region of a gene that you have recently sequenced.
 
You are using shotgun sequencing to determine the DNA sequence of the genome of this new bacterial species. For one strand of a 30-nucleotide long stretch of DNA, you get the following sequences out of your shotgun sequencing reaction. Assemble the entire 30-nt-long DNA sequence
  
5’-TGGGAGTTCCTCAAACGCGTTGTCACTGAC-3’
You put the DNA sequence that you have assembled into a computer program that tells you that the following piece of DNA, which comes from another bacterium, is a close match to the sequence you have sequenced from your bacterium: 5’-…TGGGCATTTCTCAAGCGGGTTGTAATGGAT…-3’
This 30-nt-long sequence fragment lies in the center of a gene, and that portion of the sequence encodes for this 10-amino acid-long part of a protein: 
N-…Trp-Ala-Phe-Leu-Lys-Arg-Val-Val-Met-Asp…-C
You hypothesize that the sequence you have discovered is another bacterial species’ version of the same gene as this previously known gene. To measure how identical the two genes are at the DNA level and/or the two proteins are at the amino acid level, you can calculate a percentage of “identity” for each. This is the percent of nucleotides (for the gene) or the percent of amino acids (for the protein) that are identical between the two sequences.
What is the % identity between the two DNA sequences?