TLS Online TPP Program

#Question id: 19664


To get carboxylic acids directly from alcohol, which of the following oxidising agents is used?

#SCPH05 I Biotechnology
  1. Alkaline KMnO4
  2. Aqueous KMnO4
  3. Acidified KMnO4
  4. Anhydrous CrO3
More Questions
TLS Online TPP Program

#Question id: 15619

#SCPH06 I Botany

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition isolate a mutation that constitutively expresses abnormally high levels of ßgalactosidase, which you designate lacc. Preliminary P1 transduction experiments indicate that lacc  is linked to the Tn5 insertion.  To map lacc  relative to lac1– you set up two reciprocal crosses. In the first cross you grow P1 on a strain that carries the Tn5 insertion and the lac1– mutation. You then use this lysate to infect a lacc mutant and select for Kanr. From 100 Kanr transductants examined, 20 are Lac–, 76 express ß-galactosidase constitutively and 4 show normal ß-galactosidase expression. In the second cross you grow P1 on a strain that carries the Tn5 insertion and the lacc mutation. You then use this lysate to infect a lac1– mutant, and select for Kanr. From 100 Kanr transductants examined, 81 are Lac– and 19  express ß-galactosidase constitutively. So what will be the correct order of  the Tn5 insertion and the lac1– and lacc  mutations. Express any measured distances as cotransduction frequencies.

TLS Online TPP Program

#Question id: 15619

#SCPH28 | Zoology

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition isolate a mutation that constitutively expresses abnormally high levels of ßgalactosidase, which you designate lacc. Preliminary P1 transduction experiments indicate that lacc  is linked to the Tn5 insertion.  To map lacc  relative to lac1– you set up two reciprocal crosses. In the first cross you grow P1 on a strain that carries the Tn5 insertion and the lac1– mutation. You then use this lysate to infect a lacc mutant and select for Kanr. From 100 Kanr transductants examined, 20 are Lac–, 76 express ß-galactosidase constitutively and 4 show normal ß-galactosidase expression. In the second cross you grow P1 on a strain that carries the Tn5 insertion and the lacc mutation. You then use this lysate to infect a lac1– mutant, and select for Kanr. From 100 Kanr transductants examined, 81 are Lac– and 19  express ß-galactosidase constitutively. So what will be the correct order of  the Tn5 insertion and the lac1– and lacc  mutations. Express any measured distances as cotransduction frequencies.

TLS Online TPP Program

#Question id: 15620

#SCPH01 Biochemistry

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition Lac– strain, called lac3–, is linked to the Tn5 insertion. From a strain carrying the Tn5 insertion and lac3– mutation you isolate an F’ that caries a region of the chromosome that includes both Tn5 and the linked Lac region. Introduce this F’ into an F– strain carrying lac1– by selecting for Kanr. These merodiploids express ß-galactosidase normally. What does this result tell you about the relationship between the lac3– and lac1- mutations?  

TLS Online TPP Program

#Question id: 15620

#SCPH06 I Botany

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition Lac– strain, called lac3–, is linked to the Tn5 insertion. From a strain carrying the Tn5 insertion and lac3– mutation you isolate an F’ that caries a region of the chromosome that includes both Tn5 and the linked Lac region. Introduce this F’ into an F– strain carrying lac1– by selecting for Kanr. These merodiploids express ß-galactosidase normally. What does this result tell you about the relationship between the lac3– and lac1- mutations?  

TLS Online TPP Program

#Question id: 15620

#SCPH28 | Zoology

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition Lac– strain, called lac3–, is linked to the Tn5 insertion. From a strain carrying the Tn5 insertion and lac3– mutation you isolate an F’ that caries a region of the chromosome that includes both Tn5 and the linked Lac region. Introduce this F’ into an F– strain carrying lac1– by selecting for Kanr. These merodiploids express ß-galactosidase normally. What does this result tell you about the relationship between the lac3– and lac1- mutations?  

TLS Online TPP Program

#Question id: 15621

#SCPH01 Biochemistry

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition Lac– strain, called lac3–, is linked to the Tn5 insertion. From a strain carrying the Tn5 insertion and lac3– mutation you isolate an F’ that caries a region of the chromosome that includes both Tn5 and the linked Lac region. Introduce this F’ into an F– strain carrying lac1– by selecting for Kanr. These merodiploids express ß-galactosidase normally. If the merodiploid were Lac–, 
a) the two mutations lie in the different gene.
b) Both mutation are complement each other
c) the two mutations lie in the same gene.
d) Both of the mutations is dominant to wild type.
what could you conclude about the relationship between the lac3– and lac1– mutations from  these statements?