TLS Online TPP Program

#Question id: 8852


The upper forelimbs of humans and bats have fairly similar skeletal structures, whereas the corresponding bones in whales have very different shapes and proportions. However, genetic data suggest that all three kinds of organisms diverged from a common ancestor at about the same time. Which of the following is the most likely explanation for these data?

#SCPH28 | Zoology
  1. Humans and bats evolved by natural selection, and whales evolved by Lamarckian mechanisms.
  2. Forelimb evolution was adaptive in people and bats, but not in whales.
  3. Natural selection in an aquatic environment resulted in significant changes to whale forelimb anatomy.
  4. Genes mutate faster in whales than in humans or bats.
More Questions
TLS Online TPP Program

#Question id: 14252

#SCPH05 I Biotechnology

Yeast cells are recovered from a fermentation broth by using a tubular centrifuge. Sixty percent (60%) of the cells are recovered at a flow rate of 12 l/min with a rotational speed of 4000 rpm. Recovery is inversely proportional to flow rate. At a constant rpm of 4000 rpm, what should be the flow rate to result in 95% cell recovery?
________________-

TLS Online TPP Program

#Question id: 14253

#SCPH05 I Biotechnology

Hybridoma cells immobilized on surfaces of Sephadex beads are used in a packed column for production of monoclonoal antibodies (Mab). Hybridoma concentration is approximately X = 5 g/l in the bed. The flow rate of the synthetic medium and glucose concentration are Q = 2 l/h and S0 = 40 g/l, respectively. The rate constant for Mab formation is k = 1 gX/l-d. Assume that there are no diffusion limitations and glucose is the rate limiting nutrient.  Determine the volume of the packed bed for 95% glucose conversion. Bed diameter is D0 = 0.2 m. Neglect the growth of the hybridomas and assume first order kinetics. 

TLS Online TPP Program

#Question id: 14254

#SCPH05 I Biotechnology

Hybridoma cells immobilized on surfaces of Sephadex beads are used in a packed column for production of monoclonoal antibodies (Mab). Hybridoma concentration is approximately X = 5 g/l in the bed. The flow rate of the synthetic medium and glucose concentration are Q = 2 l/h and S0 = 40 g/l, respectively. The rate constant for Mab formation is k = 1 gX/l-d. Assume that there are no diffusion limitations and glucose is the rate limiting nutrient.  Determine the height of the packed bed for 95% glucose conversion. Bed diameter is D0 = 0.2 m. Neglect the growth of the hybridomas and assume first order kinetics. 

TLS Online TPP Program

#Question id: 14255

#SCPH05 I Biotechnology

Hybridoma cells immobilized on surfaces of Sephadex beads are used in a packed column for production of monoclonoal antibodies (Mab). Hybridoma concentration is approximately X = 5 g/l in the bed. The flow rate of the synthetic medium and glucose concentration are Q = 2 l/h and S0 = 40 g/l, respectively. The rate constant for Mab formation is k = 1 gX/l-d. Assume that there are no diffusion limitations and glucose is the rate limiting nutrient.  If Yp/s is 4 mg Mab/g glu, determine the effluent Mab concentration of the system?

TLS Online TPP Program

#Question id: 14256

#SCPH05 I Biotechnology

Hybridoma cells immobilized on surfaces of Sephadex beads are used in a packed column for production of monoclonoal antibodies (Mab). Hybridoma concentration is approximately X = 5 g/l in the bed. The flow rate of the synthetic medium and glucose concentration are Q = 2 l/h and S0 = 40 g/l, respectively. The rate constant for Mab formation is k = 1 gX/l-d. Assume that there are no diffusion limitations and glucose is the rate limiting nutrient.  If Yp/s is 4 mg Mab/g glu, determine productivity of the system? __________________

TLS Online TPP Program

#Question id: 14257

#SCPH05 I Biotechnology

The kLa of a small bubble column (2 l) has been measured as 20 h-1 at an airflow of 4 l/m in. If the rate of oxygen uptake by a culture of Catharanthus roseus is 0.2 mmol O2/g dry weight-h and if the critical oxygen concentration must be above 10% of saturation (about 8 mg/l), what is the maximum concentration of cells that can be maintained in the reactor?