TLS Online TPP Program

#Question id: 16128


You are studying regulation of the yeast enzyme glutamine synthetase (GS), which is encoded by the GLN1 gene. You have isolated two mutants, designated gln2– and gln3–, that give decreased GS activity. Mating of either gln2– or gln3– haploids to wild type produces heterozygous diploids that show normal amounts of GS expression. When you cross either a gln2– or gln3– haploid to a gln1– strain the resulting diploids show normal expression of GS. 
Next, you decide to evaluate the promoter for the GLN1 gene. To do this you first fuse the promoter region to the LacZ coding sequence and then place this hybrid gene on an appropriate yeast plasmid. You find that cells carrying the hybrid gene express activity under the same conditions that GS is expressed in wild type cells, meaning that the promoter region you have selected contains all of the necessary cis-acting sequences for normal regulation. The figure below shows the effect of different 50 bp deletions in the promoter region on the amount of ß-galactosidase activity expressed by the reporter gene. how would you expect a gln2– gln3– double mutant to behave?



#SCPH01 Biochemistry
  1. gln2-gln3- double mutant to be uninducible.
  2. gln2-gln3- double mutant to be inducible
  3. gln2-gln3- double mutant to be uninducible
  4. gln2-gln3- double mutant to be uninducible
More Questions
TLS Online TPP Program

#Question id: 15617

#SCPH01 Biochemistry

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition you have a wild type (Lac+) strain carrying a Tn5 insertion known to be near several Lac genes on the E. coli chromosome. You grow P1 phage on this strain and use the resulting phage lysate to infect the lac1– strain, selecting for kanamycin resistance (Kanr). Among 100 Kanr transductants, you find that 82 are Lac– and 18 are Lac+. Express the distance between Tn5 and the lac1– mutation as a cotransduction frequency;

TLS Online TPP Program

#Question id: 15617

#SCPH06 I Botany

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition you have a wild type (Lac+) strain carrying a Tn5 insertion known to be near several Lac genes on the E. coli chromosome. You grow P1 phage on this strain and use the resulting phage lysate to infect the lac1– strain, selecting for kanamycin resistance (Kanr). Among 100 Kanr transductants, you find that 82 are Lac– and 18 are Lac+. Express the distance between Tn5 and the lac1– mutation as a cotransduction frequency;

TLS Online TPP Program

#Question id: 15617

#SCPH28 | Zoology

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1–, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac–). During an condition you have a wild type (Lac+) strain carrying a Tn5 insertion known to be near several Lac genes on the E. coli chromosome. You grow P1 phage on this strain and use the resulting phage lysate to infect the lac1– strain, selecting for kanamycin resistance (Kanr). Among 100 Kanr transductants, you find that 82 are Lac– and 18 are Lac+. Express the distance between Tn5 and the lac1– mutation as a cotransduction frequency;

TLS Online TPP Program

#Question id: 15618

#SCPH01 Biochemistry

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1-, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac-). During an condition  isolate  a second Lac– mutation, which you designate lac2-. Using P1 phage on this strain and use the resulting phage lysate to infect the lac2- strain, selecting for   Kanr   transductants. In this case, all 100   Kanr   transductants that are examined are Lac–. What does this result tell you about the relationship between the lac1- and lac2- mutations?

TLS Online TPP Program

#Question id: 15618

#SCPH06 I Botany

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1-, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac-). During an condition  isolate  a second Lac– mutation, which you designate lac2-. Using P1 phage on this strain and use the resulting phage lysate to infect the lac2- strain, selecting for   Kanr   transductants. In this case, all 100   Kanr   transductants that are examined are Lac–. What does this result tell you about the relationship between the lac1- and lac2- mutations?

TLS Online TPP Program

#Question id: 15618

#SCPH28 | Zoology

Wild type E. coli metabolizes the sugar lactose by expressing the enzyme ß-galactosidase. You have isolated a mutant that you call lac1-, which cannot synthesize ß-galactosidase and cannot grow on lactose (Lac-). During an condition  isolate  a second Lac– mutation, which you designate lac2-. Using P1 phage on this strain and use the resulting phage lysate to infect the lac2- strain, selecting for   Kanr   transductants. In this case, all 100   Kanr   transductants that are examined are Lac–. What does this result tell you about the relationship between the lac1- and lac2- mutations?