TLS Online TPP Program

#Question id: 7263


Following statements are regarding to the drosophila.

 A. At the completion of oogenesis, the bicoid message is anchored at the anterior end of the oocyte and the nanos message is tethered to the posterior end in translationally dormant condition.

 B. The translation inhibitors Smaug and CUP. Smaug binds to the 3’UTR of both bicoid and nanos mRNA and recruits the CUP protein that prevents the association of the message with the ribosome as well as recruiting other proteins that deadenylate the message and target it for degradation.

 C. The bicoid-Exuperantia complex is transported out of the nurse cells and into the oocyte via microtubules (Kinesin ATPase).

 D. Two other maternally provided mRNAs—caudal and hunchback are critical for patterning the anterior and posterior regions of the body plan, respectively.

 Which of the following combination is correct?

#Unit 5. Developmental Biology
  1. A and B
  2. B and C
  3. C and D
  4. A and C

More Questions
TLS Online TPP Program

#Question id: 17675

#Unit 8. Inheritance Biology

In humans, albinism (unpigmented skin, hair, and eyes) is due to an enzymatic deficiency, and it is an autosomal recessive trait. Suppose that in a small country of one million people (“Generation 1”), there are 500 aa albinos and 9000 Aa heterozygous carries. If the Generation 1 follow the Hardy-Weinberg equilibrium?
a) then the number of homozygous aa albino individuals would be equal to P2
b) there were 500 albino individuals in generation one.
c) then the number of homozygous aa albino individuals would be equal to q2
d) there were 25 albino individuals in generation one.
Which of the following is the correct prediction about the hardy-weingburg equilibrium?

TLS Online TPP Program

#Question id: 17674

#Unit 8. Inheritance Biology

In humans, albinism (unpigmented skin, hair, and eyes) is due to an enzymatic deficiency, and it is an autosomal recessive trait. Suppose that in a small country of one million people (“Generation 1”), there are 500 aa albinos and 9000 Aa heterozygous carriers. Has the frequency of allele a changed between Generations 1 and 2? 

TLS Online TPP Program

#Question id: 15155

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.

Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in parallel with dominant mutations in both genes, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.

TLS Online TPP Program

#Question id: 15154

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in parallel with a recessive mutation in one gene and a dominant mutation in the other, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.

TLS Online TPP Program

#Question id: 15153

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses is made between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in parallel with recessive mutations in both genes, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.

TLS Online TPP Program

#Question id: 15152

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses is made between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in series with dominant mutations in both genes, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.