TLS Online TPP Program

#Question id: 12254


Assume that the abundance of a species in a community is proportional to the size of its niche. As each new species colonises this community, an existing niche is split. The resultant relative abundances of species in this community will be most uneven

#Unit 10. Ecological Principles
  1. The largest niche is always split when a new species colonises if: 
  2. The niches are split at random, independent of their size
  3. The probability of a niche being split is proportional to its size
  4. The smallest niche is always split when a new species colonises
More Questions
TLS Online TPP Program

#Question id: 17674

#Unit 8. Inheritance Biology

In humans, albinism (unpigmented skin, hair, and eyes) is due to an enzymatic deficiency, and it is an autosomal recessive trait. Suppose that in a small country of one million people (“Generation 1”), there are 500 aa albinos and 9000 Aa heterozygous carriers. Has the frequency of allele a changed between Generations 1 and 2? 

TLS Online TPP Program

#Question id: 15155

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.

Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in parallel with dominant mutations in both genes, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.

TLS Online TPP Program

#Question id: 15154

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in parallel with a recessive mutation in one gene and a dominant mutation in the other, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.

TLS Online TPP Program

#Question id: 15153

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses is made between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in parallel with recessive mutations in both genes, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.

TLS Online TPP Program

#Question id: 15152

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses is made between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in series with dominant mutations in both genes, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.

TLS Online TPP Program

#Question id: 15151

#Unit 8. Inheritance Biology

In this problem we will explore some of the many ways that mutations in two different genes can interact to produce different Mendelian ratios. Consider a hypothetical insect species that has red eyes. Imagine mutations in two different unlinked genes that can, in certain combinations, block the formation of red eye pigment yielding mutants with white eyes. In principle, there are two different possible arrangements for two biochemical steps responsible for the formation of red eye pigment. The two genes might act in series such that a mutation in either gene would block the formation of red pigment. Alternatively, the two genes could act in parallel such that mutations in both genes would be required to block the formation of red pigment.
Further complexity arises from the possibility that mutations in either gene that lead to a block in enzymatic activity could be either dominant or recessive. If the crosses is made between a wild type insect with red eyes and a true breeding white eyed strain with mutations in both genes. Such considerations yield the Pathways in series with a recessive mutation in one gene and a dominant mutation in the other, determine the phenotype of the F1 progeny and the expected phenotypic ratio of red to white eyed insects in the F2.