TLS Online TPP Program

#Question id: 10138


The Calvin–Benson cycle proceeds in three phases that are highly coordinated in the chloroplast these three phases namely--Carboxylation, Reduction and Regeneration. The following statements are not related to the three phases of Calvin–Benson cycle:

#I Life Science/ Life Sciences Group – I-V
  1. On the basis of Stoichiometry, Six molecules of ATP and six molecules of NADPH are consumed in reduction phase
  2. 1,3-bisphosphoglycerate is reduced to six molecules of glyceraldehyde3-phosphate with the concurrent release of six molecules of inorganic phosphate in reduction phase
  3. In regeneration, which restores the CO2 acceptor ribulose 1,5-bisphosphate, at steady state, the input of CO2 equals the output of triose phosphate
  4. In carboxylation reaction,  Ribulose 1,5-bisphosphate is carboxylated into 3-Phosphoglycerate via rubisco and it uses 3 molecules of CO2 and ATP
More Questions
TLS Online TPP Program

#Question id: 16135

#SCPH01 Biochemistry

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
Would you expect the DNA sequence of PCR product obtained at STS5 using mouse genomic DNA as template to more closely resemble that obtained using BAC B, BAC D, or BAC F? Briefly explain your answer.

TLS Online TPP Program

#Question id: 16135

#SCPH06 I Botany

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
Would you expect the DNA sequence of PCR product obtained at STS5 using mouse genomic DNA as template to more closely resemble that obtained using BAC B, BAC D, or BAC F? Briefly explain your answer.

TLS Online TPP Program

#Question id: 16136

#SCPH01 Biochemistry

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
Is there a second STS at which you would like to sequence PCR products obtained using BACs as templates? If so, which BACs would you test in this way, and what sequencing results might you predict for each of the BACs tested?

TLS Online TPP Program

#Question id: 16136

#SCPH06 I Botany

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
Is there a second STS at which you would like to sequence PCR products obtained using BACs as templates? If so, which BACs would you test in this way, and what sequencing results might you predict for each of the BACs tested?

TLS Online TPP Program

#Question id: 16137

#SCPH01 Biochemistry

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
How would you use the sequence information presented in to design two new STSs (with new PCR primer pairs) to replace STS5? (Call the new ones STS51 and STS52. STS51 should be present (+) in BAC B, and STS52 should be present (+) in BAC F.)

TLS Online TPP Program

#Question id: 16137

#SCPH06 I Botany

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
How would you use the sequence information presented in to design two new STSs (with new PCR primer pairs) to replace STS5? (Call the new ones STS51 and STS52. STS51 should be present (+) in BAC B, and STS52 should be present (+) in BAC F.)