TLS Online TPP Program

#Question id: 5443


Two varieties of maize averaging 25 and 125 inches in height, respectively, are crossed. The F1 progeny is quite uniform averaging 75 inches in height. Plant height is control by 3 QTL, what is the probability of plant with 25 inch height in F2 generation?

#SCPH06 I Botany
  1. 1/16                 

  2. 1/64          

  3. 1/4                        

  4. 1/8

More Questions
TLS Online TPP Program

#Question id: 4152

#SCPH01 Biochemistry

The pathway for polypeptides exported from E. coli includes the following steps, which occur in what order for correct export?

1.  A chaperone, SecA, binds to the polypeptide.

2.  A chaperone, SecB, binds to the polypeptide.

3.  ATP is hydrolyzed by Sec A.

4.  SecA pushes 20 amino acids of the polypeptide into the translocation complex.

TLS Online TPP Program

#Question id: 4152

#SCPH05 I Biotechnology

The pathway for polypeptides exported from E. coli includes the following steps, which occur in what order for correct export?

1.  A chaperone, SecA, binds to the polypeptide.

2.  A chaperone, SecB, binds to the polypeptide.

3.  ATP is hydrolyzed by Sec A.

4.  SecA pushes 20 amino acids of the polypeptide into the translocation complex.

TLS Online TPP Program

#Question id: 4152

#SCPH06 I Botany

The pathway for polypeptides exported from E. coli includes the following steps, which occur in what order for correct export?

1.  A chaperone, SecA, binds to the polypeptide.

2.  A chaperone, SecB, binds to the polypeptide.

3.  ATP is hydrolyzed by Sec A.

4.  SecA pushes 20 amino acids of the polypeptide into the translocation complex.

TLS Online TPP Program

#Question id: 4152

#SCPH28 | Zoology

The pathway for polypeptides exported from E. coli includes the following steps, which occur in what order for correct export?

1.  A chaperone, SecA, binds to the polypeptide.

2.  A chaperone, SecB, binds to the polypeptide.

3.  ATP is hydrolyzed by Sec A.

4.  SecA pushes 20 amino acids of the polypeptide into the translocation complex.

TLS Online TPP Program

#Question id: 4153

#SCPH01 Biochemistry

Ubiquitin-mediated protein degradation is a complex process, and many of the signals remain unknown.  One known signal involves recognition of amino acids in a processed protein that are either stabilizing (Ala, Gly, Met, Ser, etc.) or destabilizing (Arg, Asp, Leu, Lys, Phe, etc.), and are located at:

TLS Online TPP Program

#Question id: 4153

#SCPH05 I Biotechnology

Ubiquitin-mediated protein degradation is a complex process, and many of the signals remain unknown.  One known signal involves recognition of amino acids in a processed protein that are either stabilizing (Ala, Gly, Met, Ser, etc.) or destabilizing (Arg, Asp, Leu, Lys, Phe, etc.), and are located at: