TLS Online TPP Program

#Question id: 4731


A pure-breeding strain of squash that produced disk-shaped fruits was crossed with a pure breeding strain having long fruits. The F1 had disk fruits, but the F2 showed a new phenotype, sphere, and was composed of the following proportions

Disk  384            

Sphere 96

 Long  32

What is reason for F2 phenotype?

#SCPH12 I Genetics
  1. Duplicate gene interaction       

  2. Dominant epistatis

  3. Collaborative gene interaction     

  4. Supplementary gene interaction

More Questions
TLS Online TPP Program

#Question id: 14312

#SCPH05 I Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  Determine the required reactor volume.

______________

TLS Online TPP Program

#Question id: 14313

#SCPH05 I Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  Determine the cell concentration in the reactor and in the recycle stream.

_____________

TLS Online TPP Program

#Question id: 14313

#SCPH05 I Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  Determine the cell concentration in the reactor and in the recycle stream.

_____________

TLS Online TPP Program

#Question id: 14314

#SCPH05 I Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h^-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  The effluent concentration is desired to be 100 mg/l. If the residence time is 2 h in the sedimentation tank, determine the volume of the sedimentation tank and cell concentration in the effluent of the sedimentation tank.

TLS Online TPP Program

#Question id: 14314

#SCPH05 I Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h^-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  The effluent concentration is desired to be 100 mg/l. If the residence time is 2 h in the sedimentation tank, determine the volume of the sedimentation tank and cell concentration in the effluent of the sedimentation tank.

TLS Online TPP Program

#Question id: 14329

#SCPH05 I Biotechnology

During exponential phase in batch culture, the growth rate of a culture is proportional to the concentration of cells present. When Streptococcus lactis bacteria are cultured in milk, the concentration of cells doubles in45 min. If this rate of growth is maintained for 12 h, what is the final concentration of cells relative to the inoculum level?