TLS Online TPP Program

#Question id: 4959


If a fossil is encased in a stratum of sedimentary rock without any strata of igneous rock (e.g., lava, volcanic ash) nearby, then it should be

#SCPH28 | Zoology
  1. easy to determine the absolute age of the fossil, because the radioisotopes in the sediments will not have been ʺresetʺ by the heat of the igneous rocks.

  2. easy to determine the absolute age of the fossil, because the igneous rocks will not have physically obstructed the deposition of sediment of a single age next to the fossil.

  3. difficult to determine the absolute age of the fossil, because the ʺmarker fossilsʺ common to igneous rock will be absent.

  4. difficult to determine the absolute age of the fossil, because radiometric dating of sedimentary rock is less accurate than that of igneous rock.

More Questions
TLS Online TPP Program

#Question id: 16135

#SCPH06 I Botany

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
Would you expect the DNA sequence of PCR product obtained at STS5 using mouse genomic DNA as template to more closely resemble that obtained using BAC B, BAC D, or BAC F? Briefly explain your answer.

TLS Online TPP Program

#Question id: 16136

#SCPH01 Biochemistry

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
Is there a second STS at which you would like to sequence PCR products obtained using BACs as templates? If so, which BACs would you test in this way, and what sequencing results might you predict for each of the BACs tested?

TLS Online TPP Program

#Question id: 16136

#SCPH06 I Botany

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
Is there a second STS at which you would like to sequence PCR products obtained using BACs as templates? If so, which BACs would you test in this way, and what sequencing results might you predict for each of the BACs tested?

TLS Online TPP Program

#Question id: 16137

#SCPH01 Biochemistry

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
How would you use the sequence information presented in to design two new STSs (with new PCR primer pairs) to replace STS5? (Call the new ones STS51 and STS52. STS51 should be present (+) in BAC B, and STS52 should be present (+) in BAC F.)

TLS Online TPP Program

#Question id: 16137

#SCPH06 I Botany

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
How would you use the sequence information presented in to design two new STSs (with new PCR primer pairs) to replace STS5? (Call the new ones STS51 and STS52. STS51 should be present (+) in BAC B, and STS52 should be present (+) in BAC F.)

TLS Online TPP Program

#Question id: 16138

#SCPH01 Biochemistry

You obtain 6 BACs (of known order, as shown below) and 7 STSs (of unknown order) that derive from a region of mouse chromosome 16 whose genomic sequence has not yet been finished.   
 
By PCR (using 20-bp primers at either end of each STS), you test each of the 6 BACs for the presence (+) or absence (-) of each of the 7 STSs. You obtain the following results:
 
Would you expect STS51 and STS52 to be present in BAC D?