TLS Online TPP Program

#Question id: 5264


Studies done by Buchner showed that ground-up yeast cells were able to convert sugar to alcohol. The components of the mixture that were responsible for this transformation were

#Unit 8. Inheritance Biology
  1. DNA molecules.

  2. enzymes.

  3. lipids.

  4. carbohydrates.

More Questions
TLS Online TPP Program

#Question id: 15817

#Unit 8. Inheritance Biology

You and your lab partner have isolated 20 new mutant yeast strains that are defective in synthesis of threonine, an amino acid. These Thr- mutants do not grow on minimal medium, but they do grow on minimal medium supplemented with threonine. Ten of your Thr- mutants (numbered 1 through 10) were isolated in a strain of mating type a (MAT a). The other 10 Thrmutants (numbered 11 through 20) were isolated in a strain of mating type α (MAT α). You and your lab partner cross each of the MAT a strains to each of the MAT α strains, and you include crosses to the appropriate wild-type strains. Your experimental observations are shown in the table below, where (-) indicates diploids that did not grow on minimal medium and (+) indicates diploids that did grow on minimal medium

Based on these experiments, what is the minimum number of genes required for threonine synthesis?

TLS Online TPP Program

#Question id: 15818

#Unit 8. Inheritance Biology

You and your lab partner have isolated 20 new mutant yeast strains that are defective in synthesis of threonine, an amino acid. These Thr- mutants do not grow on minimal medium, but they do grow on minimal medium supplemented with threonine. Ten of your Thr- mutants (numbered 1 through 10) were isolated in a strain of mating type a (MAT a). The other 10 Thrmutants (numbered 11 through 20) were isolated in a strain of mating type α (MAT α). You and your lab partner cross each of the MAT a strains to each of the MAT α strains, and you include crosses to the appropriate wild-type strains. Your experimental observations are shown in the table below, where (-) indicates diploids that did not grow on minimal medium and (+) indicates diploids that did grow on minimal medium.

What is the maximum number of genes that these 20 mutants could represent?

TLS Online TPP Program

#Question id: 17674

#Unit 8. Inheritance Biology

In humans, albinism (unpigmented skin, hair, and eyes) is due to an enzymatic deficiency, and it is an autosomal recessive trait. Suppose that in a small country of one million people (“Generation 1”), there are 500 aa albinos and 9000 Aa heterozygous carriers. Has the frequency of allele a changed between Generations 1 and 2? 

TLS Online TPP Program

#Question id: 17675

#Unit 8. Inheritance Biology

In humans, albinism (unpigmented skin, hair, and eyes) is due to an enzymatic deficiency, and it is an autosomal recessive trait. Suppose that in a small country of one million people (“Generation 1”), there are 500 aa albinos and 9000 Aa heterozygous carries. If the Generation 1 follow the Hardy-Weinberg equilibrium?
a) then the number of homozygous aa albino individuals would be equal to P2
b) there were 500 albino individuals in generation one.
c) then the number of homozygous aa albino individuals would be equal to q2
d) there were 25 albino individuals in generation one.
Which of the following is the correct prediction about the hardy-weingburg equilibrium?

TLS Online TPP Program

#Question id: 18081

#Unit 8. Inheritance Biology

The interaction of selection and inbreeding in determining the incidence of autosomal recessive diseases. Consider a gene in which recessive mutations occur at a rate of 10-5. Assume a selective disadvantage S of 0.4 in homozygotes for the recessive allele. What is the frequency of the recessive allele (q). And calculate the incidence of the disease. Assume random mating.

TLS Online TPP Program

#Question id: 18082

#Unit 8. Inheritance Biology

The interaction of selection and inbreeding in determining the incidence of autosomal recessive diseases. Consider a gene in which recessive mutations occur at a rate of 10-5. Assume a selective disadvantage S of 0.4 in homozygotes for the recessive allele. Now assume that, for thousands of generations, 10% of all children have been products of first-cousin matings (the remaining 90% being products of random matings). Calculate the steady-state value of q. Also calculate the incidence of the disease at steady state.