TLS Online TPP Program

#Question id: 11799


Companion cells in minor veins of mature leaves. All three cell types have dense cytoplasm and abundant mitochondria, there are three types companion cells  present in column A while its characteristics given in column B;

             COLUMN A                                                             COLUMN B

A) Ordinary companion cells              i) appear well suited for taking up solutes via cytoplasmic connections numerous plasmodesmata connecting them to bundle sheath cells. Its having numerous small vacuoles, as well as poorly developed thylakoids.

 

B) Transfer cells                                    ii) have chloroplasts with well-developed thylakoids     and a cell wall with a smooth inner surface. The number of plasmodesmata connecting ordinary companion cells to surrounding cells.

C) Intermediary cells                          iii) the development of fingerlike wall in growths, particularly on the cell Walls. These wall ingrowths greatly increase the surface area of the transfer cell’s  plasma membrane, few plasmodesmata connect this type of companion cell to any of the surrounding cells except its own sieve element.

Which of the following correct combination;

#Section 6: Plant, Animal and Microbial Biotechnology
  1. A-iii, B-ii, C-i                    
  2. A-i, B-iii, C-ii
  3. A-ii, B-iii, C-i   
  4. A-ii, B-i, C-iii
More Questions
TLS Online TPP Program

#Question id: 14308

#Section 5: Bioprocess Engineering and Process Biotechnology

Pseudomonas putida with µm = 0.5 h-1 is cultivated in a continuous culture under aerobic conditions where D = 0.28 h-1 . The carbon and energy source in the feed is lactose with aconcentration of S0 = 2 g/l. The effluent lactose concentration is desired to be S = 0.1 g/l. If the growth rate is limited by oxygen transfer, by using the following information:


What should be the oxygen-transfer coefficient (kLa) in order to overcome oxygentransfer limitation (i.e., CL = 2 mg/l)? ___________________

TLS Online TPP Program

#Question id: 14309

#Section 5: Bioprocess Engineering and Process Biotechnology

Glucose is converted to ethanol by immobilized yeast cells entrapped in gel beads. The specific rate of ethanol production is: qP = 0.2 g ethanol/g-cell-h. The effectiveness factor for an average bead is 0.8. Each bead contains 50 g/L of cells. The voids volume in the column is 40%. Assume growth is negligible (all glucose is converted into ethanol). The feed flow rate is F = 400 l/h and glucose concentration in the feed is S0i = 150 g glucose/l. The diameter of the column is 1 m and the yield coefficient is about 0.49 g ethanol/g glucose. The column height is 4 m. What is the glucose conversion at the exit of the column?

TLS Online TPP Program

#Question id: 14310

#Section 5: Bioprocess Engineering and Process Biotechnology

Glucose is converted to ethanol by immobilized yeast cells entrapped in gel beads. The specific rate of ethanol production is: qP = 0.2 g ethanol/g-cell-h. The effectiveness factor for an average bead is 0.8. Each bead contains 50 g/L of cells. The voids volume in the column is 40%. Assume growth is negligible (all glucose is converted into ethanol). The feed flow rate is F = 400 l/h and glucose concentration in the feed is S0i = 150 g glucose/l. The diameter of the column is 1 m and the yield coefficient is about 0.49 g ethanol/g glucose. The column height is 4 m. What is the ethanol concentration in the exit stream?

________________

TLS Online TPP Program

#Question id: 14311

#Section 5: Bioprocess Engineering and Process Biotechnology

Consider following fig, which applies to a fed-batch system.

                           

Assume at t = 0, V = 100 l, X = 2 g/l, m = 1 h-1 , S0 = 4 g/l, and S = 0.01 g/l. V is increased at a constant rate such that dV/dt = 20 l/h = F (or flow rate) and X is constant at all times. What is µ at t = 5 h?

TLS Online TPP Program

#Question id: 14312

#Section 5: Bioprocess Engineering and Process Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  Determine the required reactor volume.

______________

TLS Online TPP Program

#Question id: 14313

#Section 5: Bioprocess Engineering and Process Biotechnology

An industrial waste-water stream is fed to a stirred-tank reactor continuously and the cells are recycled back to the reactor from the bottom of the sedimentation tank placed after the reactor. The following are given for the system: F = 100 l/h; S0 = 5000 mg/l; mm = 0.25 h-1 ; Ks = 200 mg/l; α (recycle ratio) = 0.6; C (cell concentration factor) = 2; Y M X/S = 0.4. The effluent concentration is desired to be 100 mg/l.  Determine the cell concentration in the reactor and in the recycle stream.

_____________