TLS Online TPP Program

#Question id: 11799


Companion cells in minor veins of mature leaves. All three cell types have dense cytoplasm and abundant mitochondria, there are three types companion cells  present in column A while its characteristics given in column B;

             COLUMN A                                                             COLUMN B

A) Ordinary companion cells              i) appear well suited for taking up solutes via cytoplasmic connections numerous plasmodesmata connecting them to bundle sheath cells. Its having numerous small vacuoles, as well as poorly developed thylakoids.

 

B) Transfer cells                                    ii) have chloroplasts with well-developed thylakoids     and a cell wall with a smooth inner surface. The number of plasmodesmata connecting ordinary companion cells to surrounding cells.

C) Intermediary cells                          iii) the development of fingerlike wall in growths, particularly on the cell Walls. These wall ingrowths greatly increase the surface area of the transfer cell’s  plasma membrane, few plasmodesmata connect this type of companion cell to any of the surrounding cells except its own sieve element.

Which of the following correct combination;

#SCPH05 I Biotechnology
  1. A-iii, B-ii, C-i                    
  2. A-i, B-iii, C-ii
  3. A-ii, B-iii, C-i   
  4. A-ii, B-i, C-iii
More Questions
TLS Online TPP Program

#Question id: 13091

#SCPH01 Biochemistry

To express a yeast gene in E. coli, your task is to design a strategy to insert the yeast gene into the bacterial plasmid. Below is a map of the area of the yeast genome surrounding the gene in which you are interested.
 
The distance between each tick mark placed on the line above is 100 bases in length
Below are the enzymes you can use, with their specific cut sites shown 5’-XXXXXX-3’ 3’-XXXXXX-5’
 
The plasmid is 5,000 bases long and the two farthest restriction enzyme sites are 200 bases apart. The plasmid has an ampicillin resistance gene somewhere on the plasmid distal from the restriction cut sites.
                              
You do the digestion of the insert and the vector and then ligate the two digestions together. You then transform the ligation into bacteria and select for ampicillin resistance. You get three colonies on your transformation plate. You isolate plasmid from each one and cut each plasmid with the enzyme XbaI. You then run your three digestions on an agarose gel and see the following patterns of bands. Describe what each plasmid actually was that was contained in each of the three colonies.
 
Which colony’s plasmid do you actually want to use for your studies?

TLS Online TPP Program

#Question id: 13091

#SCPH05 I Biotechnology

To express a yeast gene in E. coli, your task is to design a strategy to insert the yeast gene into the bacterial plasmid. Below is a map of the area of the yeast genome surrounding the gene in which you are interested.
 
The distance between each tick mark placed on the line above is 100 bases in length
Below are the enzymes you can use, with their specific cut sites shown 5’-XXXXXX-3’ 3’-XXXXXX-5’
 
The plasmid is 5,000 bases long and the two farthest restriction enzyme sites are 200 bases apart. The plasmid has an ampicillin resistance gene somewhere on the plasmid distal from the restriction cut sites.
                              
You do the digestion of the insert and the vector and then ligate the two digestions together. You then transform the ligation into bacteria and select for ampicillin resistance. You get three colonies on your transformation plate. You isolate plasmid from each one and cut each plasmid with the enzyme XbaI. You then run your three digestions on an agarose gel and see the following patterns of bands. Describe what each plasmid actually was that was contained in each of the three colonies.
 
Which colony’s plasmid do you actually want to use for your studies?

TLS Online TPP Program

#Question id: 13091

#SCPH06 I Botany

To express a yeast gene in E. coli, your task is to design a strategy to insert the yeast gene into the bacterial plasmid. Below is a map of the area of the yeast genome surrounding the gene in which you are interested.
 
The distance between each tick mark placed on the line above is 100 bases in length
Below are the enzymes you can use, with their specific cut sites shown 5’-XXXXXX-3’ 3’-XXXXXX-5’
 
The plasmid is 5,000 bases long and the two farthest restriction enzyme sites are 200 bases apart. The plasmid has an ampicillin resistance gene somewhere on the plasmid distal from the restriction cut sites.
                              
You do the digestion of the insert and the vector and then ligate the two digestions together. You then transform the ligation into bacteria and select for ampicillin resistance. You get three colonies on your transformation plate. You isolate plasmid from each one and cut each plasmid with the enzyme XbaI. You then run your three digestions on an agarose gel and see the following patterns of bands. Describe what each plasmid actually was that was contained in each of the three colonies.
 
Which colony’s plasmid do you actually want to use for your studies?

TLS Online TPP Program

#Question id: 13091

#SCPH28 | Zoology

To express a yeast gene in E. coli, your task is to design a strategy to insert the yeast gene into the bacterial plasmid. Below is a map of the area of the yeast genome surrounding the gene in which you are interested.
 
The distance between each tick mark placed on the line above is 100 bases in length
Below are the enzymes you can use, with their specific cut sites shown 5’-XXXXXX-3’ 3’-XXXXXX-5’
 
The plasmid is 5,000 bases long and the two farthest restriction enzyme sites are 200 bases apart. The plasmid has an ampicillin resistance gene somewhere on the plasmid distal from the restriction cut sites.
                              
You do the digestion of the insert and the vector and then ligate the two digestions together. You then transform the ligation into bacteria and select for ampicillin resistance. You get three colonies on your transformation plate. You isolate plasmid from each one and cut each plasmid with the enzyme XbaI. You then run your three digestions on an agarose gel and see the following patterns of bands. Describe what each plasmid actually was that was contained in each of the three colonies.
 
Which colony’s plasmid do you actually want to use for your studies?

TLS Online TPP Program

#Question id: 13092

#SCPH01 Biochemistry

To express a yeast gene in E. coli, your task is to design a strategy to insert the yeast gene into the bacterial plasmid. Below is a map of the area of the yeast genome surrounding the gene in which you are interested.
 
The distance between each tick mark placed on the line above is 100 bases in length
Below are the enzymes you can use, with their specific cut sites shown 5’-XXXXXX-3’ 3’-XXXXXX-5’
 
The plasmid is 5,000 bases long and the two farthest restriction enzyme sites are 200 bases apart. The plasmid has an ampicillin resistance gene somewhere on the plasmid distal from the restriction cut sites.
                              
Which two restriction enzymes would you use to design a way to get the insert into the vector if you had to use two enzymes simultaneously?

TLS Online TPP Program

#Question id: 13092

#SCPH05 I Biotechnology

To express a yeast gene in E. coli, your task is to design a strategy to insert the yeast gene into the bacterial plasmid. Below is a map of the area of the yeast genome surrounding the gene in which you are interested.
 
The distance between each tick mark placed on the line above is 100 bases in length
Below are the enzymes you can use, with their specific cut sites shown 5’-XXXXXX-3’ 3’-XXXXXX-5’
 
The plasmid is 5,000 bases long and the two farthest restriction enzyme sites are 200 bases apart. The plasmid has an ampicillin resistance gene somewhere on the plasmid distal from the restriction cut sites.
                              
Which two restriction enzymes would you use to design a way to get the insert into the vector if you had to use two enzymes simultaneously?