TLS Online TPP Program

#Question id: 3724


Okazaki fragments are ________.

#Section 3: Genetics, Cellular and Molecular Biology
  1. the smallest subunits of DNA polymerase III

  2. short stretches of DNA formed on the lagging strand

  3. short RNA primers needed for initiation of polymerization

  4. fragments of DNA polymerase I that lack 5ʹ → 3ʹ exonuclease activity

More Questions
TLS Online TPP Program

#Question id: 14231

#Section 5: Bioprocess Engineering and Process Biotechnology

In current service, 20 kg s^-1 cooling water at 12⁰C must be circulated through a coil inside a fermenter to maintain the temperature at 37⁰C The coil is 150 m long with pipe diameter 12 cm; the exit water temperature is 28⁰C After the inner and outer surfaces of the coil are cleaned it is found that only 13 kg s^-1 cooling water is required to control the fermentation temperature. Calculate the overall heat-transfer coefficient before cleaning. What fraction of the total resistance to heat transfer before cleaning was due to fouling deposits?____________

TLS Online TPP Program

#Question id: 14232

#Section 5: Bioprocess Engineering and Process Biotechnology

Nutrient medium is to be heated from 10⁰C to 28⁰C is a single-pass countercurrent shell-and-tube heat exchanger before being pumped into a fed-batch fermenter. Medium passes through the tubes of the exchanger; the shell-side fluid is water which enters with flow rate 3 x 10^4 kg h^- 1 and temperature 60⁰C pre-heated medium is required at a rate of 50 m^3 h^-1. The density, viscosity and heat capacity of the medium are the same as water; the thermal conductivity of the medium is 0.54 Wm^- 1 ⁰C^ - 1. It is proposed to use 30 steel tubes with inner diameter 5 cm; the tubes will be arranged in line. The pipe wall is 5-mm thick; the thermal conductivity of the metal is 50 Wm^- 1 ⁰C^ - 1. The maximum linear shell-side fluid velocity is estimated as 0.15 m s^-1. What is the rate of heat transfer?

TLS Online TPP Program

#Question id: 14233

#Section 5: Bioprocess Engineering and Process Biotechnology

Nutrient medium is to be heated from 10⁰C to 28⁰C is a single-pass countercurrent shell-and-tube heat exchanger before being pumped into a fed-batch fermenter. Medium passes through the tubes of the exchanger; the shell-side fluid is water which enters with flow rate 3 x 10^4 kg h^- 1 and temperature 60⁰C pre-heated medium is required at a rate of 50 m^3 h^-1. The density, viscosity and heat capacity of the medium are the same as water; the thermal conductivity of the medium is 0.54 Wm^- 1 ⁰C ^- 1. It is proposed to use 30 steel tubes with inner diameter 5 cm; the tubes will be arranged in line. The pipe wall is 5-mm thick; the thermal conductivity of the metal is 50 Wm^- 1 ⁰C ^- 1. The maximum linear shell-side fluid velocity is estimated as 0.15 m s^-1. Calculate the overall heat-transfer coefficient._________

TLS Online TPP Program

#Question id: 14234

#Section 5: Bioprocess Engineering and Process Biotechnology

Nutrient medium is to be heated from 10⁰C to 28⁰C is a single-pass countercurrent shell-and-tube heat exchanger before being pumped into a fed-batch fermenter. Medium passes through the tubes of the exchanger; the shell-side fluid is water which enters with flow rate 3 x 10^4 kg h^- 1 and temperature 60⁰C pre-heated medium is required at a rate of 50 m^3 h^-1. The density, viscosity and heat capacity of the medium are the same as water; the thermal conductivity of the medium is 0.54 Wm^- 1 ⁰C ^- 1. It is proposed to use 30 steel tubes with inner diameter 5 cm; the tubes will be arranged in line. The pipe wall is 5-mm thick; the thermal conductivity of the metal is 50 Wm^- 1 ⁰C ^- 1. The maximum linear shell-side fluid velocity is estimated as 0.15 m s^-1. Calculate the log-mean temperature difference _________

TLS Online TPP Program

#Question id: 14235

#Section 5: Bioprocess Engineering and Process Biotechnology

Nutrient medium is to be heated from 10⁰C to 28⁰C is a single-pass countercurrent shell-and-tube heat exchanger before being pumped into a fed-batch fermenter. Medium passes through the tubes of the exchanger; the shell-side fluid is water which enters with flow rate 3 x 10^4 kg h^- 1 and temperature 60⁰C pre-heated medium is required at a rate of 50 m^3 h^-1. The density, viscosity and heat capacity of the medium are the same as water; the thermal conductivity of the medium is 0.54 Wm^- 1 ⁰C^ - 1. It is proposed to use 30 steel tubes with inner diameter 5 cm; the tubes will be arranged in line. The pipe wall is 5-mm thick; the thermal conductivity of the metal is 50 Wm^- 1 ⁰C^ - 1. The maximum linear shell-side fluid velocity is estimated as 0.15 m s^-1.  Determine the heat-transfer area. ____________

TLS Online TPP Program

#Question id: 14236

#Section 5: Bioprocess Engineering and Process Biotechnology

Nutrient medium is to be heated from 10⁰C to 28⁰C is a single-pass countercurrent shell-and-tube heat exchanger before being pumped into a fed-batch fermenter. Medium passes through the tubes of the exchanger; the shell-side fluid is water which enters with flow rate 3 x 10^4 kg h^- 1 and temperature 60⁰C pre-heated medium is required at a rate of 50 m^3 h^-1. The density, viscosity and heat capacity of the medium are the same as water; the thermal conductivity of the medium is 0.54 Wm^- 1 ⁰C ^- 1. It is proposed to use 30 steel tubes with inner diameter 5 cm; the tubes will be arranged in line. The pipe wall is 5-mm thick; the thermal conductivity of the metal is 50 Wm^- 1 ⁰C^ - 1. The maximum linear shell-side fluid velocity is estimated as 0.15 m s^-1. What tube length is required? ____________