TLS Online TPP Program

#Question id: 322


A covalent bond is likely to be polar when ________.

#SCPH06 I Botany
  1. one of the atoms sharing electrons is more electronegative than the other atom

  2. the two atoms sharing electrons are equally electronegative

  3. carbon is one of the two atoms sharing electrons

  4. the two atoms sharing electrons are of the same elements

More Questions
TLS Online TPP Program

#Question id: 15464

#SCPH05 I Biotechnology

The quantity of heat required to evaporate 1 kg of a saturated liquid is called

TLS Online TPP Program

#Question id: 15465

#SCPH05 I Biotechnology

50 g benzaldehyde vapour is condensed at 179°C. What is the enthalpy of the liquid relative to the vapour?  (Standard latent heat for vaporisation for benzaldehyde is 38.40 kJ gmol-1)

TLS Online TPP Program

#Question id: 15466

#SCPH05 I Biotechnology

Water at 25°C enters an open heating tank at a rate of 10 kg h-1. Liquid water leaves the tank at 88°C at a rate of 9 kg h-1; 1 kg h-1 water vapour is lost from the system through evaporation. At steady state, what is the rate of heat input to the system?
h (liquid water at 25°C = 104.8 kJ kg-1
h (liquid water at 88°C = 368.5 kJ kg-1
h (saturated steam at 88°C = 2656.9 kJ kg-1)

TLS Online TPP Program

#Question id: 15467

#SCPH05 I Biotechnology

Fumaric acid is produced from Malic acid using Fumarase. Calculate standard heat of reaction for the following transformation:
C4H6O5 → C4H4O4 + H2O
Given: (Δhc°)malic acid= -1328.8 kJ/gmol 
   (Δhc°)Fumaric acid= -1334.0 kJ/gmol

TLS Online TPP Program

#Question id: 15468

#SCPH05 I Biotechnology

In downstream processing of gluconic acid, concentrated fermentation broth containing 20% (w/w) gluconic acid is cooled in a heat exchanger prior to crystallisation. 2000 kg h-1 liquid leaving an evaporator at 90°C must be cooled to 6°C. Cooling is achieved by heat exchange with 2700 kg h-1 water initially at 2°C. The final temperature of the cooling water is 50°C. 
Assume (heat capacity of gluconic acid is 0.35 cal g-1 °C-1).
h (liquid water at 90°C = 376.9 kJ kg-1)
h (liquid water at 6°C = 25.2 kJ kg-1)
h (liquid water at 2°C = 8.4 kJ kg-1 )
h (liquid water at 50°C = 209.3 kJ kg-1)
h (gluconic acid at 90°C=0)
How much heat is removed to the cooling water?

TLS Online TPP Program

#Question id: 15469

#SCPH05 I Biotechnology

What is the rate of heat loss from the gluconic acid solution to the surroundings?