TLS Online TPP Program

#Question id: 15622


9 In your study of a new bacterial species you have identified a transducing phage that you call Px. In addition you have worked out methods to make random transposon insertions into the bacterial genome. You have generated two different transposon insertion collections one with 105 random Tn5 (Kanr) insertions and the other with 105 random Tn10 (Tetr) insertions. You grow Px phage on the mixed collection of Tn5 insertions and use the resulting phage lysate to infect the mixed collection of Tn10 insertions. You select 10,000 Kanr  transductants and find that 80 of them are Tets. Use this information to estimate the total size of the bacterial genome assuming that both Tn5 and Tn10 insert randomly and that the average size of a fragment recombined into the recipient genome during Px transduction is 55 kbp. (Tn5 is about 5 kbp and Tn10 is 10 kbp.)

#SCPH01 Biochemistry
  1.  total genome length of 6250kbp.
  2.  total genome length of 6250kbp.
  3. total genome length of 6250kbp.
  4. total genome length of 6250kbp
More Questions
TLS Online TPP Program

#Question id: 13055

#SCPH01 Biochemistry

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following will provide least specific amplification in qPCR?

TLS Online TPP Program

#Question id: 13055

#SCPH05 I Biotechnology

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following will provide least specific amplification in qPCR?

TLS Online TPP Program

#Question id: 13055

#SCPH06 I Botany

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following will provide least specific amplification in qPCR?

TLS Online TPP Program

#Question id: 13055

#SCPH28 | Zoology

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following will provide least specific amplification in qPCR?

TLS Online TPP Program

#Question id: 13056

#SCPH01 Biochemistry

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
 Which of the following is true for traditional and real time PCR?

TLS Online TPP Program

#Question id: 13056

#SCPH05 I Biotechnology

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
 Which of the following is true for traditional and real time PCR?