TLS Online TPP Program

#Question id: 14861


A fermentation slurry containing Streptomyces kanamyceticus cells is filtered using a continuous rotary vacuum filter. 120 kg h- 1 slurry is fed to the filter; 1 kg slurry contains 60 g cell solids. To improve filtration rates, particles of diatomaceous-earth filter aid are added at a rate of 10 kg h- 1. The concentration of kanamycin in the slurry is 0.05% by weight. Liquid filtrate is collected at a rate of 112 kg h-1; the concentration of kanamycin in the filtrate is 0.045% (w/w). Filter cake containing cells and filter aid is continuously removed from the filter cloth.
If the concentration of kanamycin in the filter-cake liquid is the same as in the filtrate, how much kanamycin is absorbed per kg filter aid?.,..... 10-4

#SCPH05 I Biotechnology
  1. -
  2. -
  3. -
  4. -
More Questions
TLS Online TPP Program

#Question id: 13064

#SCPH01 Biochemistry

Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following techniques doesn’t involve use of a secondary antibody?

TLS Online TPP Program

#Question id: 13064

#SCPH05 I Biotechnology

Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following techniques doesn’t involve use of a secondary antibody?

TLS Online TPP Program

#Question id: 13064

#SCPH06 I Botany

Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following techniques doesn’t involve use of a secondary antibody?

TLS Online TPP Program

#Question id: 13064

#SCPH28 | Zoology

Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following techniques doesn’t involve use of a secondary antibody?

TLS Online TPP Program

#Question id: 13065

#SCPH01 Biochemistry

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Agglutination of antigens by utilising specific antibodies can only occur, if

TLS Online TPP Program

#Question id: 13065

#SCPH05 I Biotechnology

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Agglutination of antigens by utilising specific antibodies can only occur, if