TLS Online TPP Program

#Question id: 13098


You are a scientist who is using genomics to currently study a new bacterial species that no one has ever studied before. The following sequence is a piece of DNA within the coding region of a gene that you have recently sequenced.
 
How many of the 6 potential open reading frames are actually open in this sequence shown above?

#SCPH28 | Zoology
  1. There is only 2 reading frame
  2. There is only 3 reading frame
  3. There is only 1 reading frame
  4. There is no open reading frame actually in these sequence
More Questions
TLS Online TPP Program

#Question id: 13054

#SCPH01 Biochemistry

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
What would the expected effect be on a PCR reaction if the primers used were slightly shorter and more variable than the intended oligonucleotide sequences?

TLS Online TPP Program

#Question id: 13054

#SCPH05 I Biotechnology

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
What would the expected effect be on a PCR reaction if the primers used were slightly shorter and more variable than the intended oligonucleotide sequences?

TLS Online TPP Program

#Question id: 13054

#SCPH06 I Botany

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
What would the expected effect be on a PCR reaction if the primers used were slightly shorter and more variable than the intended oligonucleotide sequences?

TLS Online TPP Program

#Question id: 13054

#SCPH28 | Zoology

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
What would the expected effect be on a PCR reaction if the primers used were slightly shorter and more variable than the intended oligonucleotide sequences?

TLS Online TPP Program

#Question id: 13055

#SCPH01 Biochemistry

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following will provide least specific amplification in qPCR?

TLS Online TPP Program

#Question id: 13055

#SCPH05 I Biotechnology

Precision will be reduced, but yield will be increased
Optimisation of a PCR reaction is often a compromise between the competing demands for precision, efficiency and yield. Although the specific effects may vary, generally, increasing the annealing temperature will increase non-specific primer binding and reduce precision. Increasing the length of the elongation phase will reduce the proportion of incomplete newly-synthesised strands and therefore increase yield. In this case, the potential effect on efficiency is unclear. Increasing the elongation phase would increase the reaction time, but the time taken to ramp down to a lower annealing temperature would be reduced.
Which of the following will provide least specific amplification in qPCR?